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In an earlier paper [1], there was developed a method for the con-
struction of periodic solutions of a non-autonomous system with one
degree of freedom for the case of simple roots of the equations of
fundamental amplitudes. In the present work there is considered the
general case when the roots of these equations may be multiple roots.
A solution containing secular terms is constructed for the case when
resonance with unlimited amplitude of oscillations occurs.

1. We shall consider a non-autonomous oscillatory system with one de-
gree of freedom

diz ) o
T+ miz =] (1) +pF (t, o zi) (1.1)

Let us assurie that the function f(t) is a continuous function, of
period 27 in ¢, and that its Fourier expansion does not contain harmonics
of the mth order (m - an integer). The function F(¢t, x, x', p) is assumed
to be analvytic in the variables x, x', g, and to be a continuous periodic
function of period 27 in t. The quantity p is a small parameter, which
for the sake of definiteness we assume to be positive.

Let us separate from the function F(¢, x, x', p) the linear temm in x
and the harmonics of order m:

Fit, o, z,p) =F(t 2, 2, u) + cx -- vcosmt 4 hsinmi

The coefficients ¢, v, and A are assumed to be constants (independent
of p) such that ¢ ¢ 0, and v2 + A2 £. 0, The linear system will thus have
the frequency k, where k is not an integer. The "perturbation" of the
system
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Oscillations of a quasilinear non-autonomous system 1219

m2— k? = cp (1.2)

is therefore of the order of magnitude of the small parameter p.
The equation thus generated
— + m?z = [ (1) (1.3)

has a general solution which can be written in the following convenient
form: 5
o (t) = ¢ (2) + Agcosmt + —> sinmt (1.4)

The function ¢»(t) represents the forced oscillations of the system
(1.3) under the external force f(t). The last two terms in the formula
(1.4) represent the free oscillations of that system. The generated equa-
tion thus has a family of periodic solutions depending on two arbitrary
constants A; and Bj,.

We shall seek the periodic solutions of the fundamental equation (1.1)
by the use of the small parameter method. We choose the following initial
conditions:

2(0) = 2,(0) + B1, 2 (0) = 2, (0) + B2 (1.9)

where the quantities f3;, and 3, are functions of y, which take on the
value zero when p = 0, The solution of (1.1) will thus be of the form

r= ‘T’(ta pli 32’ P')

We shall try to determine the structure of the function x(t, Bl, BZ,
p). Let us assume that this function has a series éxpansion in positive
powers of the parameters f3,, f3, and u. Let us find those terms of this
series which are independent of 3, and 3, but do depend on pu. It is
easily seen that all these terms vanish, except those that are linear in
B, and B,. This is due to the fact that the coefficients of these terms
satisfy second order linear homogeneous differential equations with
vanishing initial conditions. After the terms which are linear in f3; and
f3, have Leen computed, the solution of (1.1) can be represented in the
form

Ba

z(t, B1, Bay &) = @ (2) + A,cosmt %’ sinmt + B, cosmt + — sin mt+

S aC" aC" 1 azcn azcn 1 a"‘Cn n
+n§1[0n (& + 38, B+ 557;?2‘!‘ 7 5@3— B+ 38,98, B1Ba-t- T o8 ?g—l—] B (1.6)

It is necessary to note that all C (t) and their derivatives with res-
pect to 3, and f3, are taken when By=B,=r=0
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It is not difficult to prove that the following formulas hold for the
function x(t, By B, p) and its derivatives with respect to time

VISRV PUSSER o
op*aplo ") B (aA"aB'a n (.7
B1 B2 B Bi=B=u=0 098 /B =p,—u=0

For n = 0 the formulas are obvious. For n £ 0 they can be proved by
complete mathematical induction analogous to that corresponding to
autonomous systems [2 ]. For this purpose the following equations are
used

k4-14n+41 k+14+n
(iIWn-:l) "'{n;iS(aaha P F) sinm (t —t;) dt;
aﬁl 52 w Bi=B;=u=0 ﬂ Bg B By=fs=1=0

These formulas can be obtained by considering the coefficient of
ﬁ’l‘B%p"’Ll in the expansion of the function x(t, 8,, B,, p).

On the basis of the above established property of the function x(t,
By By, ¢t), one can rewrite the formula (1.6) in the following form:

(1.8)
z (¢, By, Bay ) = @ (2) + Aycosmt —}—f—“—sinmz + Bicosmt 4 ﬁ;’sinmt—i—

o°C,, 2 o*C,, 1 0%C, 2
+ 2 C (t)+6A pl+aB {32+26A 1+mp1ﬁz+§5§o§ﬂg+...] wr

n=\

Hence, for the construction of the function x(t, f3,, B ¢) one has to
know how to compute the coefficient C,(t) of t". The remaxmng coeffi-
cients of the series are then found by successive differentiation of
Cn(t) with respect to Ao and Bo.

The coefficients C (t) satisfy the equation
d*C,, (t) 1 an1F
—d:%— +m*Cn (1) = H"(t)’ Ha (t) (T:W [_tm—":r]B,=B.=u=o
with the initial conditions C,(0) = 0, Cn'(O) =

The quantity dF/dp 1is the total partial derivative of the function
F(t, x, x*, p) with respect to the parameter p. We obtain

t i
Cn (t) = —;—SH,. (t)sinm (¢ —t)dt, Co'(t) = | Ha(t) cosm (2 — ) dty (1.9)

0

In the explicit form, the first three functions H (t) are given as
follows [2]:
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H,(t) = F (¢, %, 20", 0) (1.10)
a0 = (), 0+ ()0 GF), a1
Hy() =5 (5%). ¢+ 3 (o), O+ (), + (142

+(:x§;\ ClCl +<6T8f:.) C1+ (618}1) Cl +(ax) Cz + ( )

The subscript 0 at the parentheses indicates that the symbols x, x°,
and g have been replaced by x;, x;,° and 0, respectively, in the deri-
vatives of the function F.

2. The conditions of periodicity of the function x(t, B,, B,, ) and
its derivative with respect to time can be expressed in the following
form with the aid of the initial conditions (1.5):

z(27,B1, Bor ) =9 (0)+ 4o+ B, 7 (2m, By Boy ) = 9" (0) + By + 85 (2.1)

Let us substitute x(27) and x°(27) into the left-hand sides of these
equations by means of the formula (1.8). After some cancellations there
result the equation

pod ac ac 1 0%C

% [on(zm) + Thbit 550t Taaht + (2.2)
o°C 1 &C, .

ﬁ;‘o BBt -2—3—37322-%— ]P’ =0

and an analogous one

oo

ac,* :C, *
2 [C (2r) + aA 51*‘ oB; Pt ; :Az B+ (2.3)

n=1
aCc,’ g 9°C° 9
+ 5405, Bibe + 7 5B B2+ ] pt =
The functions C, and C * and their derivatives with respect to A, and
B, are taken with t = 27,8, = B, =y = 0 in formulas (2.2) and (2.3).

Let us assume that the quantities B, and f3, can be expanded in power
series of p, i.e.,

B= Z Anp™, B, = 2 Bnpn

n==] n=1
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We now substitute the expressions for B; and B, into the left-hand
sides of equations (2.2) and (2.3) and express them as power series in p.
Next, we equate to zero the coefficients of these series and arrange the
resulting equations in pairs. The terms which are independent of p yield
the following equations

C,(2r) =0, C,'(2r)=0 (2.4)

The coefficients of the first powers of p yield the equations

C; (2n) + I - 4y + aB‘ B, =0, Crem+% - A+ T 2 B, =0 (25

The coeff1c1em:s of u? lead to the equations

Co(2n) + 353t Ay + 3By 5o Ay + 32 Bot (2.6)
1 9%C a:C ac
+3 BA;A2+8A3113 AB, + 2 6}3; By =
acy
aA

AP oA

45+ 55 By + (2.7)

8Cy
A0B,

Cy' (2n) + a"’" Aﬁ“‘* B+ 8

13(71
-]LZBA'2

The coefficients of p? yield

&
Cy(2m) + 003 A+ 6CsBl+ afel‘iz-f’ Oy By +

R

L1 9C, 4., 0C, 1 8%Cy oo, 0C 301
‘T"E‘ aAzAl"}"aAoaB A1B1+ 3 aBaBl +6 AB Bs+
a:C 8 C BC
+ BA; A4, + b a]_; (4;By + A,B)) + aala BlBg+

1 &C 8°C 8¢ 1 8¢
+¥ 6A:A13+ aaAﬂa% A?B, + 2aAa§2 4B + aB“?l =0 (28)

and analogous equations in which the C, are replaced everywhere by C °
The other equations can also be written down quite easily.

The equations (2.4) represent the equations for the determination of
the constants Ao and BO' If these equations have simple roots, the func-
tional determinant

_18C; /84,  8C, /0B,
By =\5¢, /04, aCy" ) 0B, (2.9)

will be different from zero. In this case it is possible to determine 4,
and B, from the equations (2.5). Furthermore, by means of equations (2.6)
and (i 7), one can find AZ and Bz, and so on. All these equations are
linear in A and B, and have the same determinant A,.

3. If the equations (2.4) have multiple roots, then
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AI = O (3.1)

If there is to exist a periodic solution with a finite amplitude in
this case, then the following additional condition has to be satisfied:
8C1/0A4, _ 3C1/0B, _ Ca (3.2)
aC, 04, ~ 9Cy /9B, — Cy '
Making use of condition (3.1), one can eliminate 4, and B, from equa-
tions (2,6) and (2.7). Solving the resulting equatlons szmultaneously
with (2.5), one can determine 4, and B,.

For example, the coefficient A, is found to have to satisfy the
quadratic equation

Pod* + P4+ Py =0 (3‘3)

The coefficients of this equation have the following values:

P ___601[_1_ a2y (a_cl;)z__ 92C,  8Cy aCy | 1 8¢, (acl')ﬂ]_
07 5By 2 84, \aB, 9A,0B, 84, 8B, 2 8B, \ 84,
acy { 1.8y (ac, t 8y 80, 8C, | 180y (30, )3}
T 3B, |2 94,° 680) 3A0B, 84, 3B, ¥ Z BBt \ 84,
P — ac, [C (aﬁc1 aCy 8y 8C 92Cy aCy 92Cy .901) v
1= 2 \3B, 94, 0Bt 34, 04,08, 0B, + 3AQPB, 3B,
9Cy rdCy oCy  8C, 8C,  8C, 8Cy . 8Cy" 8C, )]
+ 3B, \34, 3B, ~ 94, 9B, 9B, 94, = @B, 34,
_ 0Ci [1 8%Cy .y 8Cy 8CY acy
Py = 8B, {z aBzC2 4B, 630”2 _( ) ]
0C» T18%C o  8Cy 9Cy aCy \2
~ 3B, ["z‘ 2B O’ — 3B, 9B, Cﬂ‘*‘( Y Cﬂ]

We note that the coefficients of the equation (3.3) can be represented
in different equivalent forms. Knowing the value A, it is not difficult
to find B, by means of one of the equations (2.5).

In order to find the coefficients 4, and B, we multiply the equation
(2.8) by C,*. The analogous equation, obta1ned through a replacement of
every C_ by C n » we multiply by C,. Next we add the two resulting equa-
tions. Then we also add equations (2.6) and (2.7). The system of equa-

tions thus obtained will be linear in 4, and B,. Let us find the deter-
minant of this system. After some simplifications we obtain

A" = (Cy + Cz.) A, (3*4)

where
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A aC, OCy oCy" 9C, 9Cy, 9Cy | dCy aC, |
g = pm et 22 2L 7FE 71 4 Tv2 T

34, 0B, 94, 3B, 0B, 94, © 0B, o4, (3-9)
4oA (BOLICT @6 o0, @0, acy | 8¢y ae,
W\34,F 3B, ~ BA, 9B,  5A.0B, 94, T 3438, 671;)
B [ PCi_9Cy 8y 9C, _ 8C, 80, | 60 o
" P1\34,9B, 9B, 64,08, 9B, OB, 94, 9B, 8A0>

It is not difficult to convince oneself that the systems of equations
for the determination of An and B’l (n=3, 4, ...) will also be linear.
The determinant of all these systems will be A,*.

If the equation (3.3) has two real roots, there will exist two periodic
solutions corresponding to a pair of double roots of the equation of the
fundamental amplitudes. In this case one can speak of the bifurcation of
the solution of the generating equation.

The condition for the existence of triple roots of the equations (2.4)
of fundamental amplitudes is the vanishing of the functional determinant
that is equal to twice the coefficient P in equation (3.3).

In this case one of the roots of equation (3.3) becomes infinite.
Hence, one of the solutions of equation (1.1) will be periodic, while the
other will be unbounded.

In all cases when there exists a periodic solution of (1.1), this
solution can be represented in the form of a power series in p:

z(2) = o (8) + pay {8) + pPza () + . . . (3.6)

The generating solution x,(t) is determined by formula (1.4). The
coefficients xn(t) are computed by means of the formulas

z, (t) = A, cosmt + Iﬁ sin mt 4- C, (t) 3.7
Z3 (£) = Ay cos mt+ 2 sinmt + A, ac, (t) + B, 601 (t) + Cy(t) (3.8)
Zg (1) = As cos mt - —smmt + 4, ac‘(t) + B, 601 (t) + ; aaC/;(: 4,24

+ 5 4B + 5 T8 Bf+Al P Bl T+ Ca(t) (39)

and so forth. The question on the radius of convergence of the series
(3.6) is not considered in this article.

4, Let us consider the stability of the periodic solution of equation
(1.1) for the case of multiple roots of the equation of fundamental
amplitudes. The equation of variations for equation (1.1) is



Oscillations of a quasilinear non-gutonomous system 1225

St my—p(om) E—u(5),y=0 (4.1)

We denote by y, (t) and y,(t) the particular solutions of the equation
of variations which form a fundamental system. These solutions satisfy
the initial conditions

nO=1 50)=0  5»0)=0 ' 0)=1

Let us consider the characteristic equation for the equation of vari-
ations

pﬂ__ZA‘p_l_B'.:O

The coefficients of this equation, as is well known, have the follow-
ing values

= ;— [y1(27) + y2" (2r)], B =y, (2%) yy" (2r) — yo (2n) y," (2%)

In order that the periodic solution of equation (1.1) be asymptotic-
ally stable, it is necessary and sufficient that the inequality [p| < 1
be satisfied. For the equation of variations (4.1) this condition reduces
to the following two conditions [1]:

B—24+1>0. |B'|<1 (4.2)
We shall seek y,(¢) and y,(t) in the form

Y1 (1) = Y10 (8) + #y1a (2) + pPysa ) + ..
Yz (8) = Yoo (1) + 121 (2) + pyaa () + ..

For the function y, (t), y,,(¢t), y,,(t) we have the following equations
d3y 2y oF oF .
dt;O + myy, =0, dt;l + mPyy = (az) Yo + <@:>0 Y10

d;?tl;z + mPy, = ; (aa—:fa) Y10’ + \W} YY1 +
+ %(%Fﬂ) 1+ ( ) Yu + (63:) Yu'

Analogous equations hold for y, (t), y,,(t), y,,(¢t). The initial con-
ditions for all these equations are

¥Y0(0) =1, 4,00 =0, Y (00=0, y"(0)=0
Yoo 0) =0, Yzo (0) =1, Y2n (0) = 0, Yo" (0) =0 (n=1,2,3..)

Solving these equations, we obtain
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ac

Y10 (t) = cos mt, yu(t)= 614“)

ac (¢ 92, (1 2C,
le(t)— ‘ ) '+'A1 3}10(2) '+"B13A laig)

i .. aC
Yz (B) = Sosinmt, Yy () = ——'—ﬂ

ac t 92C, (¢ a C t
yﬁ (t) = !( ) + Al 6.40:353) + Bl. a;(a) (43)

After some computations, the left-hand side of the first of the in-
equalities (4.2) can be shown to take the form

(B"— 24" + 1 = [y11 (27) ya," (27) — y11" (2%) yay (2m)] 02 4
+ [¥11 (27)Y2s’(20)— y11" (21) Yaa (27) + Y13 (27) Yo" (2m) —
—Y1o' m) Yy (2m) S+ .. = AP - At 4L (4.4)
The quantities A, and A , are determined by means of formulas (2.9) and

(3.5). In the case of simple roots of the equation of the fundamental
amplitudes, one of the conditions for asymptotic stability will be

A, >0 (4.5)
In case of double roots, this condition is replaced by
;>0 (4.6)

In each of these cases, it is necessary to add the second condition
of (4.2), which reduces to the inequality
an

S (z—f,-)odz <0 (4.7)

5. We shall next consider some periodic solutions of equation (1.1).
If the parameters A and B are not roots of the equation (2.4}, the
function z (t), which em:ers into the expansion (3.6), will in general
have the form

z; () = 2, (£) + tz,0 ()
Zg (t) = 2,0 (£) + tz,® (2) + 22, (2)

Zn (t) = 2,00 (2) + 12,0 4 . . . 4 "2, M (1)

where all the xn“}(t) are periodic functions of period 27 in t. Hence,
the solution of equation (1.1) in this case will have the following
structure:

Z(1) = @0 (2, ) + it OO (¢, p) + p22 QW (2, ) +- ... - GRY
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The functions ¢h(1)(t, p) in formula (5.1) represent periodic functions
of period 27 in t, which in the general case do not vanish when p = 0,
All the coefficients A, and B, that appear in the initial conditions can
be given in advance in this case.

To each simple real root of the equation of fundamental amplitudes
there corresponds a unique periodic solution of equation (1.1)., If, how-
ever, the roots are multiple ones, but the conditions (3.2) are not
satisfied, then the equations (2.5) will yield infinite values for the
coefficients A, and B,. In this case, there will exist no periodic solu-
tion of equation (1.13. We shall now try to find a solution which con-
tains secular terms.

The secular terms cannot occur in the coefficient of the first power
of p in the expansion (3.6), for the equations of fundamental amplitudes
are obtained from the condition for the periodicity of this coefficient.
Therefore, the secular terms can first appear in the coefficient of pZ.

The functions C (t), which occur in the coefficients x,(t) of the
periodic solution ?3 6) of equation (1.1), are periodic functions. This
is due to the fact that the quantities C,(2#)and C,*(27) and their
derivatives with respect to A; and B, are subjected to special conditions.
If these conditions are not imposed, then (as is easily verified) the
functions C_(t), determined by formulas (1.9), can be represented in the
form
C,° (2n)

m

Ca(t) = Ca (1) + 5= [ Cn (27) cos mt - sin mt] (5.2)

where C O(t) is the periodic part of the function.

In the case under consideration, the function x, (t), will have, in
view of (3.8) and (5.2), the following form (the subscrlpt zero has been
dropped at C, (t) and C,(t)):

2, (8) = Ay cosmt + 2 sinmt+ 4, ag;(‘ +8% ‘) +
+Cz(t)+%(Mcosmt+ rIrVT sin mt) (5.3)

Here
M= 4,2 ‘4B 0, N=a, 7L -+ By gt "Cl +C (5.4)

The coefficients A and B, beginning with A, and B,, can be given in
advance. However, the" coeff1c1ents A, and B, are obtainable if one imposes
auxiliary conditions on x;(t). Let us consider the equation for the func-
tion x,(t). Denoting the right-hand side of this equation by G5(t), we
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separate the periodic terms which enter into it
[oF aF . .t oF N\ | aF
()ym+ (Gl =+ o= | M (Gg), + N (5, [+

Let us impose the condition that the function x3(t) shall not contain
secular terms with t2, This leads to the conditions

Cslt) =

?[M (:_i)ﬁ + N ({Z—go)o ] sin mtdt = 0,
]

T2+ 720 Joosmace =0

0

These conditions are equivalent to two equations which determine the
coefficients A, and B,:

Mgf; . N"C1 4+ ¢, =0, aC’ +N % Lier=0  (55)
We introduce the following notation:
o
_ 86, aCy [ oF .
S=g +am = ) (G )2 (-6)
0
The solutions of equations (5.5) are
4=—%, B=-9= (6.7
The quantities M and N are given by
ocC __ac ac =
Mﬁs(oBl w0 N=g(—3 IC“LB ) 68

It is inferesting to note that the same result is obtained if one does
not impose on the function xa(t) any conditions, but instead restricts
the function zn+_1(t) to the same terms which are contained in the pre-
ceding function x (t), i.e. to the terms with Lt

The coefficients 4, and Bé,and the succeeding ones, cannot be deter-
mined from any conditions imposed on the functions x, (1), for such con-
ditions lead to unbounded values of A, and A4,. These ccefficients can
only be given in advance.

The formulas (5.7) and (5.8) have a meaning only under the condition
that the quantity S in (5.6) be different from zero. Thus, the indicated
form of the solution is not applicable, in particular, for the case of a
conservative system.

Hence, in the considered case, the solution of equation (1,1) has the
following structure:
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z () = @@ (t, ) + p2 D@ (2, p) + 22D (L, u) + . ... (5.9)

vhere the functions @ (2)(t, i) are determined in a manner analogous to
the one used for the determination of ¢%(1)(t, p) in formula (5.1).

If conditions (3.2) are fulfilled, then the quantities M and N will
vanish and the function x,(t) will be periodic. The coefficients A; and
B, determined by the formulas (5.7) satisfy equations (2.5). They do
not, however, satisfy the infinite system of equations which determine
the set of coefficients A  and B,. As is shown above, under the condition
(3.2) one needs equation {3.3) and one of the equations (2.5) for the de-
termination of the coefficients A, and B,. Should the equations (2.4) have
triple roots, one of the solutions of equation (1.1) becomes unbounded.
In this case the secular terms can not occur earlier than in the function
xa(tL

The considered cases, when the coefficients A, and B satisfy equa-
tions (2.4) but the solution of equation (1.1) contains secular terms,
are the resonance cases. In addition to those considered, one can
point out also other types of resonance, when, for example, the coeffi-
cients A1 and 31 have finite values, while the coefficients A, and B
become unbounded, and so forth. This will occur under condition (3.23 1f
the equations (2.4) have multiple roots and the determinant A;*
becomes zero,

From the above it follows that the basic difference between the re-
sonance solutions and the periodic solutions is the appearance 1in the
resonance solutions of secular terms within the coefficients of p? and
of the higher powers of the expansion (3.6), while in the non-resonance,
non-periodic solutions these secular terms already appear in the coeffi-
cient of the first power of p.

6. Let us consider some examples*. We make the preliminary remark that
all the results presented above also remain valid for the nth order re-
sonance.

1. Oscillations in the neighborhood of the resonance in a regenerative
receiver. In this case the equation of oscillations can be reduced to the
form

dz . dz
atT+z=p[vcost-}-)\smt-]-cx—}-(a+Bz+7:c2)gt-:| (6.1)

We have the following equations of fundamental amplitudes

* All examples are taken from the book by Malkin [1].
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1
Y+ cAg+ aBy + 7 1B (Ag + BR) = 0

1
n+ eBy— ady— 7 1A (Ay? -+ Byt) =0 (6.2)

The condition for double ronts of equation (6,2) leads to the follow-
ing relation between the coefficients:

2778 (v2 + A2)2 + 16a7 (a® -+ 9¢?) (v2 + A2) + 64c? (a2 4 ¢2)2 == 0 (6.3)

The roots of the equation (6,2) are thus found to be
_ 9YA (ViR 32ac2A—8¢ (3¢t —a?)v
O 7 T Bay (v A%) + 16¢% (at f c?)
B — _ 9yv (v 4 A?) + 32ac?v - 8¢ (3c2 — a2) A
o= Bay (V@ 4- A%) F- 16¢2 (0 + ¢?)

In the presence of relation (6.3) there exists a resonance solution
with secular terms. Periodic solutions will not exist.

2. Resonance of the second type in a regenerative receiver. We take
the equation of oscillations in the following form:

dx . dx
T +a=—3vcos2t —3hsin2t L p [c:c -+ (o 4 Bx + va?) W} (6.4)

The amplitude equations will be

CA0+aBO+_;"B()\A0_VBo)+—;—TBo [V2+)\2 +T;‘(A02+Boz)] =0
(6.5)

¢By—ady — B (v, + ABp) — T34y [ 422 4+ L (424 Bn] =0

The condition under which there will exist double roots for these

equations is
B2 (V2 A%) —4e2 =0 (6.6)

Let us consider some particular cases (the coefficients a and y have
ditferent signs, 4,2 > 0, B2 > 0).

(a) v = 0. Two sub-cases can arise:

Ay =0, 302=—212_4°;—, 8\ = 2¢
By =0, A02=—2)\2——4$—. BA = — 2

Under these conditions there will exist resonance solutions of the
type (5.9). In the presence of the following auxiliary relation

5B2(32a — yA2) = 7 (60a? 4 26ath? — Ty2A4)
between the coefficients, the condition (3.2) will be fulfilled, and,
hence, there will exist a periodic solution.
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{b) A = 0. Here also two sub-cases can occur:

A, = B,, Bo"=~v2—2-:—. Bu= 2¢
Ay =— By, Bg=_wt_z%. By = — 2¢

This corresponds to the resonance solutions with secular terms. When
the additional condition

582 (32a — 7v8) = 7 (60a® 4 28ayv? — Tyivt)
is fulfilled, there will exist a periodic solution,

3. Duffin’s problem in quasilinear formuletion. The equation of
oscillations is
d*z .
-&-t-;-+z=p(vcost+?\smt+cx+7x’) (6.7)
The equations of fundamental amplitudes are

3 3
v4cd, + 7 1Ay (A + By?) =0, A+ ¢By T 1B, (A2 + B2y =0 (6.8)
The condition for multiple roots reduces to the following relation
between the coefficients of the equation:
81y (V¥ 4-A2) 4 163 =0 (6.9)

The coefficients ¢ and y must have opposite signs. The the roots of
the equation (6.8) will be

3
By = — 5 —

ra ] 2 ¢

3

v
Ah=—37

Under condition (6.9) there can exist no periodic solution.

The examples considered above show that the phenomenon of resonance
occurs, as a rule, when ¢ £ 0, i.e. when the "perturbance* of the system
(1.2) is not zero. In case of a fundamental resonance this means that
the frequency of the natural (characteristic) oscillations of the linear
system with resonance, does not usually coincide with the frequency of
the disturbing force. In case of nth type of resonance the frequency of
the natural (characteristic) oscillations with resonance, is usually not
1/n times the frequency of the disturbing force (n being an integer).
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